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Blowout bifurcation in a system of coupled chaotic lasers
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~Received 18 February 1998!

We show that loss of synchronization of two identical coupled chaotic class B lasers can occur via ablowout
bifurcation. This occurs when a transverse Lyapunov exponent governing the stability of a synchronized
subspace passes through zero. A system of two laterally coupled lasers with modulated parameters is investi-
gated numerically in a region of chaotic behavior. A total of five invariant subspaces are shown to exist.
Evidence of a blowout from one of these subspaces is found in Lyapunov exponents and in the presence of
on-off intermittency for small enough coupling strengths. At all parameter values investigated, the phases of
the electric fields are shown to be precisely synchronized even though the amplitudes may fluctuate chaotically
and independently. We discuss the implication that there will be bubbling effects in laser systems in the
presence of noise and imperfections.@S1063-651X~98!01012-5#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Ah
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Understanding the synchronization and desynchroniza
of signals from two or more nearly identical lasers is a ma
that has important technological applications. Notably, it
important for designing high power coherent laser sour
from arrays of low power lasers or for high-speed comm
nication using synchronized optical systems. These app
tions have led to several studies of the problem of chaos
synchronization in lasers over the last few years@1–7#.

We consider symmetric coupling of a pair of identic
class B lasers@8#. In addition to the obvious symmetry o
interchanging the lasers, there are phase-shift symmetrie
the electric fields. An elementary but surprising conseque
of these symmetries is the existence of states that are ex
phase-synchronized~synchronized! but not amplitude syn-
chronized.

We observe a new route to loss of synchronization in la
systems. It is a symmetry breaking that is purely dynamic
i.e., caused by loss of stability of a synchronized attrac
through a ‘blowout’ bifurcation, where a state exhibitin
synchronization of both the phase and intensity loses sta
ity to fluctuations that preserve only the phase synchron
tion. Such bifurcations have been seen numerically in m
@9–11# and experimentally in electronic and other syste
@12–14# but this is, to our knowledge, the first observation
a blowout bifurcation in a laser system of any sort.

For physical systems, symmetry is only an idealizat
that is broken by imperfections in the system~e.g., where a
perfectly synchronized state no longer exists@6#! or by noise
within the system that moves the trajectory away from a
synchronized state~e.g.,@15#!. In fact it is clear that only in
exceptional cases will an exactly synchronized state be
served on breaking the symmetry.

What we show is that such forced symmetry breaking
not necessary for desynchronization of lasers coupled
overlap of electric field; the mechanism we investigate le
to desynchronization without the need to appeal to eithe
these effects. Moreover, it is a form of desynchronizat
that will only occur when chaotic dynamics is present in t
system.
PRE 581063-651X/98/58~6!/7186~4!/$15.00
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The system we consider is a pair of coupled lasers wh
the coupling is purely via overlap of the electric field. Th
lasers under consideration are class B, where only the fi
and gain variables need be considered. The lasers are
jected to identical periodic modulations of the loss and m
become chaotic in certain parameter regimes.

Our analysis is motivated by the two coupled single-mo
class B lasers studied in Refs.@2,3,15#. We include a peri-
odic forcing of the loss so that the two lasers are modula
at a rate close to the natural relaxation oscillation frequen
the frequency with which the laser intensity naturally fluct
ates. Loss modulations at frequencies near the relaxation
cillation frequency have been shown to generate chaotic
namics in similar systems@16,17#.

The lasers are assumed to be identical in all their par
eters and they are subject to the same modulated loss;
are also assumed not to be detuned and thus frequ
locked. Such lasers are governed by the following equati
defining an evolution in the five dimensional phase spac

dX1

dT
5@F12a0~11aMcosvt !#X12bX2cosF,

dF1

dT
5g@A02F12F1X1

2#,

dX2

dT
5@F22a0~11aMcosvt !#X22bX1cosF, ~1!

dF2

dT
5g@A02F22F2X2

2#,

dF

dT
5b~X2X1

211X1X2
21!sinF.

Xi represents the electric field amplitude,Fi the gain of laser
i 51,2, andF the difference in phases between the elec
7186 © 1998 The American Physical Society
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TABLE I. The symmetry-forced invariant subspaces of the equations for two coupled lasers. Th
column gives a symbol for the subgroup of symmetries that fix a typical point in this invariant subspac
coordinates given by the second column (X1 ,F1 ,X2 ,F2 ,C are arbitrary values for these coordinates!. The
third column gives the dimension of this invariant subspace within the five dimensional phase space

Symmetry Representative point Dimension Name

Z2(k)3Z2(m)1 (X1 ,F1,0,0,0) 2 Synchronized
Z2(k)3Z2(m)2 (X1 ,F1,0,0,p) 2 Antisynchronized
Z2(m)1 (X1 ,F1 ,X2 ,F2,0) 4 Phase synchronized
Z2(m)2 (X1 ,F1 ,X2 ,F2 ,p) 4 Phase antisynchronized
Z2(km) (X1 ,F1,0,0,C) 3 Amplitude synchronized
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fields of the two lasersf22f1 . The equations are nond
mensionalized with time being expressed in units of
round-trip time of light around the cavity,tc . A0 is the
pump parameter, while the parameterg represents the ratio
of the time scales of the electric fieldtc and the upper leve
spontaneous emission lifetime of the laser materialt f . We
performed most of our simulations usingg51022 to avoid
stiffness problems that arise with smaller values ofg. For
the Nd:YAG lasers~YAG denotes yttrium aluminum garne!
and the resonator configuration considered in Refs.@2,15#
g;1026, but for other media~e.g., Ti:AL2O3 and CO2 @16#!
or Nd:YAG in longer resonators than those considered
@2,3,15#, we can obtain lasers with this more moderate va
of g.

The lasers are modulated with a depthaM relative to their
mean lossesa0 . In the absence of modulation both lasers a
stable and exhibit damped oscillations to their fixed-po
values. The coupling viab is caused by the overlap of th
laser electric fields in a laser crystal. If the beams ha
Gaussian profile with 1/e2 radii w0 and are separated by
distanced then the coupling is proportional to the area

overlap between the two lasers,b;e2d2/w0
2

@18#.
Because we are interested in the problem of synchron

tion, we introduce the sum and difference variables,X1

5 1
2 (X11X2), X25 1

2 (X12X2), F15 1
2 (F11F2), F2

5 1
2 (F12F2), to facilitate the stability analysis of the syn

chronized state.
The transformed system is equivariant under the actio

the symmetry

k~X1 ,F1 ,X2 ,F2 ,F!5~X1 ,F1 ,2X2 ,2F2 ,2F!

corresponding to interchanging the two lasers. There is
other not so obvious symmetry of the system, namely

m~X1 ,F1 ,X2 ,F2 ,F!5~X1 ,F1 ,X2 ,F2 ,2F!

as the only coupling is via cos(F) terms. This corresponds t
interchanging the phases of the beams without interchan
their amplitudes.

There is also a symmetry involving the parameterb; this
addsp onto F while reversing the sign of the parameterb.
We use the parameter symmetry to simplify the numer
however, this is not physically relevant asb>0 in practice.

BecauseF is a periodic function,m will fix the subspaces
whereF50 or p and so there are in total five distinct dy
namically invariant subspaces that are forced to exist pu
by virtue of their symmetry. These are listed in Table I.
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particular interest are the existence of states we callphase-
synchronized where the phases of the two lasers are ide
cal andphase antisynchronizedthat are phase synchronize
with a constantp phase difference. Both of these phase sy
chronized states, surprisingly, do not show synchroniza
of their amplitude dynamics. Possibly even more surpris
is the existence of states we denote as amplitude sync
nized where the amplitudes are identical but the phases
not. However, these last states are not observed to be at
tors of the system in the absence of detuning.

For 0,g!1 the system undergoes a period doubling c
cade to chaos as the strength of modulationaM is increased,
for values of the forcing frequency close to the rela
ation oscillation frequency~cf. @16#!. Any attractor is con-
tained either in the phase-synchronized or pha
antisynchronized subspaces. This is because for
(X1 ,X2) bounded away from zero we havedF/dt
5bFsinF with F positive and bounded below. Therefo
F→p as t→` for almost any initial condition, and any
attractor must be contained within the phas
antisynchronized subspace. Note that ifb,0 then the
above holds but with the phase-synchronized and ph
antisynchronized subspaces exchanged.

The simulations were performed using Bulirsch Stoer a
Runge-Kutta integrators. We consider here only the cas
modulated loss but note that we have found similar res
for modulated pumping. For a typical value ofg50.01 and
A051.2, a050.9 andaM52/9 we see, on varying the cou
pling strengthb, that there is a critical value ofb, bc
;0.002 234, such that a randomly chosen initial condit
evolves as follows. For 0,b,bc the trajectory is attracted
onto the phase-antisynchronized subspace to a chaotic
tractor that intersects but is not contained within the antis
chronized subspace. Forb.bc there is an attractor within
the antisynchronized subspace. As explained above,
phase differenceF always evolves top.

Figures 1~a! and 1~b! demonstrate the amplitude dynam
ics @given in terms of the sum (X1) and difference (X2)
variables# for a fully synchronized attractor withb.bc . For
contrast, Figs. 1~c! and 1~d! show an attractor with occa
sional large fluctuations away from the synchronized s
space reminiscent of on-off intermittent behavior atb,bc .
The transition atbc is strongly suggestive of a blowout b
furcation @9#.

To investigate the loss of synchronization atb5bc and
confirm the blowout scenario we numerically compute t
Lyapunov exponents of attractors by integrating the va
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tional equations; recall that a blowout bifurcation occu
when the largest transverse Lyapunov exponent of the at
tor for the system within an invariant subspace pas
through zero. This Lyapunov exponent governs the expon
tial rate of growth of almost all perturbations away from t
invariant subspace and in particular when it is negative
attractor within the subspace is the attractor for the full s
tem.

Suppose we have a trajectory„x1(t), f 1(t),0,0,p… for an
initial condition chosen randomly for the system~1! in the
subspaceZ2(k)3Z2(m)2 ~the antisynchronized subspac!
and consider the behavior of a point„x1(t)1dx1 , f 1(t)
1d f 1 ,dx2 ,d f 2 ,p1df… linearized about thed variables.
The d terms represent small perturbations away from
trajectory. Perturbations withdx25d f 25df50 corre-
spond to perturbations within the antisynchronized subsp
and these grow at a rateeLt where L is sometangential
Lyapunov exponentL1 or L2 . Any other perturbation will
grow at a rateelt wherel is a transverseLyapunov expo-
nent. If any of these transverse Lyapunov exponents are p
tive, the antisynchronized subspace is unstable. Since
antisynchronized subspace is codimension 3, there are t
transverse Lyapunov exponents. We can divide these up
a pair,l1 andl2 , corresponding to perturbations within th
phase-antisynchronized subspace and onel3 that breaks
phase locking. It is easy to compute from the linearization
the last equation of Eq.~1! that l3522b.

To see precisely when the antisynchronized state is
tracting, we have numerically computedl i,0 for i 51,2.
Figure 2 shows a scan through a range ofb showing the

FIG. 1. Numerically calculated electric field amplitudes in
loss-modulated laser, computed by integrating Eqs.~1! with ran-
domly chosen initial conditions.X is shown in arbitrary units,t in
units of the round-trip lifetime of the laser. Figures~a! and~b! show
the intensity sum (X1) and difference (X2) variables, respectively
at a couplingb50.003, and the complete synchronization of th
intensities typical of dynamics on the~anti!synchronized attractor
~c! and ~d! show the intensity sum and difference variables a
value ofb50.002 that is less thanbc . On-off intermittent behavior
is seen in the occasional, large fluctuations away from the~anti!syn-
chronized attractor.
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tangential and transverse Lyapunov exponents. This
computed using trajectories with length 150 000 and
thonormalization of the variational equations. By making
linear fit on the obtained values ofl1 we compute that the
blowout occurs at approximatelybc50.002 234. Forb,bc
there is an attracting on-off intermittent state that persists
to the point of the blowout bifurcation. We have also inve
tigated cases forg51023 and 531024 and observed similar
behavior, with the additional observation that the blowo
bifurcations occur for progressively smaller values ofb as
the stiffness parameterg is reduced. Due to the increase
stiffness of the equations, the numerics become much ha
to evaluate accurately in this limit, and machine precis
becomes an important issue when computing the nor
Lyapunov exponents.

In conclusion, we demonstrate there can be a blow
bifurcation in a system of two coupled lasers with perio
cally modulated parameters. This is a dynamical symme
breaking within the system that leads to a desynchroniza
of the amplitudes of the two chaotic lasers, comparable
bifurcations studied in@9,11,12#. The desynchronized attrac
tors are still exactly phase~anti!synchronized due to othe
symmetries of the system.

In the experiment of@2#, desynchronizing of two near
identical Nd:YAG lasers was observed to occur on incre
ing the distance between them and hence decreasing the
pling; this fits well to our numerical observations eve
though in the experiment~a! pump modulation was use
instead of loss modulation and~b! the values ofg were of
the order of 1026. The similarity in the qualitative behavior
lead us to believe that the blowout is an important mec
nism for loss of stabilty in the experiment even though it w

a

FIG. 2. Scan through parameter space showing the variatio
the Lyapunov exponents withb for an initial condition started
within the antisynchronized subspace, parameter values as in F
TheL i are tangential Lyapunov exponents whereas thel i are trans-
verse Lyapunov exponents. N.B.,~a! The most positivel1 passes
through 0 atb;0.002 23 indicating a blowout bifurcation occur
here,~b! L1 is positive, indicating the presence of chaotic behavi
~c! there are occasional dips inL1 corresponding to windows o
stabilization of periodic attractors in the antisynchronized subsp
~d! l3522b exactly.
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be modified~as detailed below! in the presence of noise an
imperfections.

For real systems such as in@2#, noise and imperfections in
the symmetry are both unavoidable and these will pla
decisive role in determining the dynamics. Noise and sy
metry breaking have similar effects; in the regime of on-
intermittency, very little change will be noticeable if pertu
bations are small. Before the blowout, however, the prese
of bubbling @12# will tend to create on-off intermittentlike
dynamics that will persist up to abubbling transition@23#.
Thus, in the presence of imperfections, the blowout scen
should still be present with the following modifications. O
decreasing the coupling strength there should be a trans
to bubbling; this will change smoothly into an on-off inte
mittency regime. If there is a mismatch in the parameters
the lasers, for example, if there is detuning, then this w
destroy some of the invariant subspaces and cause the p
dynamics to become more nontrivial, as discussed, for
ample, in@15#. This will presumably also result in bubblin
effects. The effects of on-off intermittency and bubblin
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have also recently been observed in simulations of coup
master-slave laser systems by Sauer and Kaiser@19#.

One consequence of this investigation is that we exp
the coupling strength for synchronizing such linearly coup
chaotic lasers will be intimately related to the magnitude
the positive Lyapunov exponent of the synchronized cha
as discussed by Schusteret al. @20#. In particular, if the~an-
ti!synchronized state is nonchaotic, e.g., attracting perio
then it will be stable and no blowout will be in evidence. A
is evident in the ‘‘coarseness’’ of the graph of Lyapun
exponents againstb in Fig. 2, the fact thatb is not a normal
parameter@21# ~i.e., b varies the dynamics within the syn
chronized subspace as well as that transverse to it! means
that we do not expect these exponents to vary smoothly
even continuously; see@22#.
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