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Blowout bifurcation in a system of coupled chaotic lasers
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We show that loss of synchronization of two identical coupled chaotic class B lasers can occhlovieat
bifurcation This occurs when a transverse Lyapunov exponent governing the stability of a synchronized
subspace passes through zero. A system of two laterally coupled lasers with modulated parameters is investi-
gated numerically in a region of chaotic behavior. A total of five invariant subspaces are shown to exist.
Evidence of a blowout from one of these subspaces is found in Lyapunov exponents and in the presence of
on-off intermittency for small enough coupling strengths. At all parameter values investigated, the phases of
the electric fields are shown to be precisely synchronized even though the amplitudes may fluctuate chaotically
and independently. We discuss the implication that there will be bubbling effects in laser systems in the
presence of noise and imperfectiofiS1063-651X98)01012-5

PACS numbes): 05.45+b, 42.65.5f, 42.55.Ah

Understanding the synchronization and desynchronization The system we consider is a pair of coupled lasers where
of signals from two or more nearly identical lasers is a mattethe coupling is purely via overlap of the electric field. The
that has important technological applications. Notably, it islasers under consideration are class B, where only the field
important for designing high power coherent laser sourceand gain variables need be considered. The lasers are sub-
from arrays of low power lasers or for high-speed commu-jected to identical periodic modulations of the loss and may
nication using synchronized optical systems. These applicasecome chaotic in certain parameter regimes.
tions have led to several studies of the problem of chaos and ¢ analysis is motivated by the two coupled single-mode
synchronization in lasers over the last few yedrs7. ~  (jass B lasers studied in Ref2,3,19. We include a peri-

We consider symmetric coupling of a pair of identical ,jc forcing of the loss so that the two lasers are modulated

iCrll?Srs hB ria?r?riti]- :n a(rjdlt;ﬁnrto trhe ﬁbwouiiéymmﬁrr)&iof ﬁfa rate close to the natural relaxation oscillation frequency;
erchanging the fasers, there are phase-snift Symmetries e frequency with which the laser intensity naturally fluctu-

the electric fields. An elementary but surprising consequenc tes. Loss modulations at frequencies near the relaxation os-

of these symme’gries is the ex_istence of states t_hat are exactly . frequency have been shown to generate chaotic dy-
phase-synchronize(synchronizedl but not amplitude syn- namics in similar systemid6.17

chronized The | d to be identical in all thei
We observe a new route to loss of synchronization in laser | N€ |asers are assumed to be identical in all their param-

systems. It is a symmetry breaking that is purely dynamical,eters and they are subject to the same modulated loss; they
i.e., caused by loss of stability of a synchronized attracto@re also assumed not to be detuned and thus frequency
through a ‘blowout’ bifurcation, where a state exhibiting locked. Such lasers are governed by the following equations
synchronization of both the phase and intensity loses stabidefining an evolution in the five dimensional phase space:

ity to fluctuations that preserve only the phase synchroniza-

tion. Such bifurca.tions havg been seen numerically in maps %=[F1—a0(1+aMCOSwt)]Xl—,BXZCOSq),

[9-11] and experimentally in electronic and other systems daT

[12—-14 but this is, to our knowledge, the first observation of

a blowout bifurcation in a laser system of any sort. dF; 2
For physical systems, symmetry is only an idealization ﬁzV[AO_Fl_Fle]’
that is broken by imperfections in the systéeng., where a
perfectly synchronized state no longer ex[&p or by noise dX,
within the system that moves the trajectory away from any a7~ [F2~ ao(1+ aucoswt) ]X;— BX,cosd, 1)
synchronized statée.g.,[15]). In fact it is clear that only in
exceptional cases will an exactly synchronized state be pre- dE
served on breaking the symmetry. 2 Y[Ag—F,—F,X2],
What we show is that such forced symmetry breaking is dT

not necessary for desynchronization of lasers coupled by
overlap of electric field; the mechanism we investigate leads
to desynchronization without the need to appeal to either of
these effects. Moreover, it is a form of desynchronization
that will only occur when chaotic dynamics is present in theX; represents the electric field amplitudg,the gain of laser

system. i=1,2, and® the difference in phases between the electric

do 1 N
d—T:B(xle +X1X5 7)sind.
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TABLE I. The symmetry-forced invariant subspaces of the equations for two coupled lasers. The first
column gives a symbol for the subgroup of symmetries that fix a typical point in this invariant subspace with
coordinates given by the second colunx,(,F, ,X_ ,F_ , ¥ are arbitrary values for these coordinat&he
third column gives the dimension of this invariant subspace within the five dimensional phase space.

Symmetry Representative point Dimension Name
Zo(k)XZo(u)* (X4 ,F,,0,0,0) 2 Synchronized
Zo(k)XZo(u)™ (X4 ,F,,0,0m) 2 Antisynchronized
Zo(u)* (X4 ,FL ,X_,F_,0) 4 Phase synchronized
Zo(w)™ (X4 ,Fy X F_,m) 4 Phase antisynchronized
Zy(kp) (X4 ,F,,0,0¥) 3 Amplitude synchronized

fields of the two lasersp,— ¢,. The equations are nondi- particular interest are the existence of states we pzdise-
mensionalized with time being expressed in units of thesynchronized where the phases of the two lasers are identi-
round-trip time of light around the cavity;,. Ag is the  cal andphase antisynchronizeithat are phase synchronized
pump parameter, while the parameterepresents the ratio with a constantr phase difference. Both of these phase syn-
of the time scales of the electric field and the upper level chronized states, surprisingly, do not show synchronization
spontaneous emission lifetime of the laser materjalWe  of their amplitude dynamics. Possibly even more surprising
performed most of our simulations using=10"2 to avoid s the existence of states we denote as amplitude synchro-
stiffness problems that arise with smaller valuesyofFor  nized where the amplitudes are identical but the phases are
the Nd:YAG lasersYAG denotes yttrium aluminum garnet ot However, these last states are not observed to be attrac-
and the resonator configu_ration C(_)nsidered in RESLY] 515 of the system in the absence of detuning.

y~10"°, but for other medide.g., T:AL,O; and CQ [16]) For 0< y<1 the system undergoes a period doubling cas-

or Nd:YAG in Ionge_r resonators thr_:m those considered irIcade to chaos as the strength of modulatignis increased,
[2,3,15, we can obtain lasers with this more moderate valueTor values of the forcing frequency close to the relax-

o z-he lasers are modulated with a depth relative to their ation oscilllation f_requenc;(cf. [16]). Any attr.actor is con-

. tained either in the phase-synchronized or phase-
mean lossegg. In the absence of modulation both lasers are_" . ; o
stable and exhibit damped oscillations to their fixed—pointam's'ynChromzed subspaces. This is because for any
values. The coupling vi@ is caused by the overlap of the (Xl’x%) bOl,ded away from zero we have®/dt
laser electric fields in a laser crystal. If the beams have SFSin® with F positive and bounded below. Therefore
Gaussian profile with &2 radii w, and are separated by a ®— 7 ast— for almost any initial condition, and any

distanced then the coupling is proportional to the area of att:_actorh m_us:j beb contair:\ledt t\a/itpinkotrt]r? ptnase-
2 antisynchronized subspace. Note tha en the
overlap between the two lasep~ e 9% [18], y b A

Because we are interested in the problem of synchroniz above holds but with the phase-synchronized and phase-

. i . ; a::'mtisynchronized subspaces exchanged.
t'OP' we introduce t?e sum and dlfferlence variabl¥s, The simulations were performed using Bulirsch Stoer and
=3(X1tXp), X_=3(X1—Xp), Fi=3(F1t+Fy), F_

{ . - ) Runge-Kutta integrators. We consider here only the case of
=2(F1—F»), 1o facilitate the stability analysis of the syn- 4 jated loss but note that we have found similar results
chronized state. . L . for modulated pumping. For a typical value ¢ 0.01 and

The transformed system is equivariant under the action o s=1.2, ap=0.9 anday=2/9 we see, on varying the cou-
the symmetry pling strengthB, that there is a critical value oB, B

_ _ _ _ ~0.002 234, such that a randomly chosen initial condition

KXo Py X P @) =X Py 2 X 2R m0) evolves as follows. For € 8< S, the trajectory is attracted

corresponding to interchanging the two lasers. There is arRnto the phase-antisynchronized subspace to a chaotic at-

other not so obvious symmetry of the system, namely tractor that intersects but is not contained within the antisyn-
chronized subspace. F@> 3. there is an attractor within
u(Xy Fo X_F_,0)=(X, ,F, X_,F_,—®) the antisynchronized subspace. As explained above, the

phase differenc® always evolves tar.
as the only coupling is via co® terms. This corresponds to Figures 1a) and 1b) demonstrate the amplitude dynam-
interchanging the phases of the beams without interchanginigs [given in terms of the sumX_) and difference X_)
their amplitudes. variableg for a fully synchronized attractor witB> 3. For
There is also a symmetry involving the paramegerthis  contrast, Figs. () and Xd) show an attractor with occa-
adds7r onto ® while reversing the sign of the paramejgr  sional large fluctuations away from the synchronized sub-
We use the parameter symmetry to simplify the numericsspace reminiscent of on-off intermittent behaviorgGat 8. .
however, this is not physically relevant 85=0 in practice.  The transition af3; is strongly suggestive of a blowout bi-
Becauseb is a periodic functiong will fix the subspaces furcation[9].
where® =0 or 7w and so there are in total five distinct dy-  To investigate the loss of synchronization @t 8. and
namically invariant subspaces that are forced to exist purelgonfirm the blowout scenario we numerically compute the
by virtue of their symmetry. These are listed in Table |. Of Lyapunov exponents of attractors by integrating the varia-
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FIG. 1. Numerically calculated electric field amplitudes in a
loss-modulated laser, computed by integrating Eds.with ran-
domly chosen initial conditionsX is shown in arbitrary unitst in
units of the round-trip lifetime of the laser. Figurgs and(b) show
the intensity sumX_.) and difference X_) variables, respectively,
at a coupling8=0.003, and the complete synchronization of their
intensities typical of dynamics on tHant)synchronized attractor.

(c) and (d) show the intensity sum and difference variables at a

value of 3=0.002 that is less thag8, . On-off intermittent behavior
is seen in the occasional, large fluctuations away fron{ahé)syn-
chronized attractor.
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FIG. 2. Scan through parameter space showing the variation of
the Lyapunov exponents witl® for an initial condition started
within the antisynchronized subspace, parameter values as in Fig. 1.
The A; are tangential Lyapunov exponents whereas\there trans-
verse Lyapunov exponents. N.Bg) The most positive\; passes
through 0 at3~0.002 23 indicating a blowout bifurcation occurs
here,(b) A is positive, indicating the presence of chaotic behavior,
(c) there are occasional dips if; corresponding to windows of
stabilization of periodic attractors in the antisynchronized subspace,
(d) N3=—2p exactly.

0.0030

tangential and transverse Lyapunov exponents. This was
computed using trajectories with length 150000 and or-

tional equations; recall that a blowout bifurcation occursthonormalization of the variational equations. By making a
when the largest transverse Lyapunov exponent of the attrafinear fit on the obtained values of, we compute that the
tor for the system within an invariant subspace passeblowout occurs at approximatej§.=0.002 234. FoiB< B,
through zero. This Lyapunov exponent governs the exponenhere is an attracting on-off intermittent state that persists up
tial rate of growth of almost all perturbations away from theto the point of the blowout bifurcation. We have also inves-
invariant subspace and in particular when it is negative theigated cases fop=10 2 and 5< 10" and observed similar
attractor within the subspace is the attractor for the full syshehavior, with the additional observation that the blowout

tem.

Suppose we have a trajectopy, (t),f, (t),0,0;7) for an
initial condition chosen randomly for the systgi) in the
subspaceZ,(k) X Z,(n)~ (the antisynchronized subspace
and consider the behavior of a poifit, (1) + ox_ ,f (t)
+6f, ,0x_,8f_ ,m+ 8¢) linearized about theS variables.

The 6 terms represent small perturbations away from the

trajectory. Perturbations withSx_=6f _=64=0 corre-

bifurcations occur for progressively smaller valuesfs

the stiffness parametey is reduced. Due to the increased
stiffness of the equations, the numerics become much harder
to evaluate accurately in this limit, and machine precision
becomes an important issue when computing the normal
Lyapunov exponents.

In conclusion, we demonstrate there can be a blowout
bifurcation in a system of two coupled lasers with periodi-

spond to perturbations within the antisynchronized subspaceally modulated parameters. This is a dynamical symmetry

and these grow at a ra&"! where A is sometangential
Lyapunov exponent; or A,. Any other perturbation will
grow at a ratee where\ is a transverseLyapunov expo-

breaking within the system that leads to a desynchronization
of the amplitudes of the two chaotic lasers, comparable to
bifurcations studied if9,11,13. The desynchronized attrac-

nent. If any of these transverse Lyapunov exponents are podiers are still exactly phas@nt)synchronized due to other
tive, the antisynchronized subspace is unstable. Since trgymmetries of the system.

antisynchronized subspace is codimension 3, there are three In the experiment of2], desynchronizing of two near-
transverse Lyapunov exponents. We can divide these up intdentical Nd:YAG lasers was observed to occur on increas-

a pair,A; and\,, corresponding to perturbations within the
phase-antisynchronized subspace and agethat breaks

ing the distance between them and hence decreasing the cou-
pling; this fits well to our numerical observations even

phase locking. It is easy to compute from the linearization othough in the experimenta) pump modulation was used

the last equation of Eq1) that\3=—28.

instead of loss modulation an@) the values ofy were of

To see precisely when the antisynchronized state is athe order of 108. The similarity in the qualitative behaviors

tracting, we have numerically computed<<0 for i=1,2.
Figure 2 shows a scan through a rangepBothowing the

lead us to believe that the blowout is an important mecha-
nism for loss of stabilty in the experiment even though it will
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be modified(as detailed belopin the presence of noise and have also recently been observed in simulations of coupled
imperfections. master-slave laser systems by Sauer and Kai@#r

For real systems such as[i2], noise and imperfections in One consequence of this investigation is that we expect
the symmetry are both unavoidable and these will play ahe coupling strength for synchronizing such linearly coupled
decisive role in determining the dynamics. Noise and symchaotic lasers will be intimately related to the magnitude of
metry breaking have similar effects; in the regime of on-offthe positive Lyapunov exponent of the synchronized chaos,
intgrmittency, very little change will be noticeable if pertur- 55 discussed by Schustral.[20]. In particular, if the(an-
bations are small. Before the blowout, however, the presencgsynchronized state is nonchaotic, e.g., attracting periodic,
of bubbling [12] will tend to create on-off intermittentlike yhen it will be stable and no blowout will be in evidence. As
dynamics that will persist up to bubbling transition[23]. i cvident in the “coarseness” of the graph of Lyapunov
Thus, in the presence of imperfections, the blowout scenarigxponents againgt in Fig. 2, the fact thaf is not a normal

should still be present with the following modifications. On arametef21] (i.e., 8 varies the dynamics within the syn-

decreas[ng.the. cou_phng strength there .ShOUId be a trf"ms't'dghronized subspace as well as that transverse) tméans
to bubbling; this will change smoothly into an on-off inter-

mittency regime. If there is a mismatch in the parameters o hat we do not expect these exponents to vary smoothly or

the lasers, for example, if there is detuning, then this will ven continuously; se@2].

destroy some of the invariant subspaces and cause the phase P.A. and J.T. would like to thank the EPSRC for their
dynamics to become more nontrivial, as discussed, for exsupport via Grant No. GR/K77365. R.R. and K.S.T.J. ac-
ample, in[15]. This will presumably also result in bubbling knowledge the support from the U.S. Office of Naval Re-
effects. The effects of on-off intermittency and bubbling search.
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